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A semi-implicit difference method of second order in space is introduced for the numerical 
solution of the Euler equations. If the Mach number E is small, the solutions are second-order 
accurate also in time. In particular, the solutions converge to an approximate solution of the 
incompressible equations as E tends to zero. Numerical experiments are presented for channel 
flow, and the theoretical results (given for the linearized equations) are shown to be valid also 
for the real nonlinear problem. ‘12 1986 Academx Press, Inc. 

1. INTRODUCTION 

We consider inviscid compressible flow governed by the barotropic Euler 
equations, which is a nonlinear hyperbolic system. In particular we shall consider 
almost incompressible flow, i.e., the Mach number E is small. In this case the system 
has time scales of different magnitude, since the sound waves are much faster than 
the motion of the fluid. If there is little energy in the sound waves, they can be 
removed from the solution completely without destroying the accuracy. One way of 
doing this is by using the equations describing incompressible flow, i.e., the 
equations obtained in the limit as E tends to zero. Kleinerman, and Majda [ll, 123 
showed, that with proper initialization the solutions to the equations for com- 
pressible flow actually converge to solutions satisfying the equations for incom- 
pressible flow. 

A general treatment of problems with different time scales has been given by 
Kreiss [13], Gustafsson [7], Browning and Kreiss [2], Gustafsson and Kreiss [9], 
and by Tadmor [14]. Special applications have been considered by Browning, 
Kasahara and Kreiss [3], Gustafsson [8], Barker [ 11, Ebin [4, 51, and by 
Kleinerman and Majda in the papers mentioned above. 
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In [6] we introduced the leapfrog-backwards Euler difference method for 
general hyperbolic systems with different time scales. Stability proofs and con- 
vergence-rate estimates were given for the case with constant coefficients and 
periodic solutions. It was also shown that the solutions converge to an approximate 
solution of the reduced equations, i.e., in our case to the linearized incompressible 
equations. Here, this method is applied to the nonlinear Euler equations. The 
geometry chosen is a channel with two-dimensional flow. In this way four different 
types of boundaries are introduced, namely, solid wall, open inflow boundary, open 
outflow boundary and a symmetry line. 

The numerical method is semi-implicit, which means that part of the differential 
operator is approximated at the highest time level. This requires the solution of a 
large system of algebraic equations at each time step. 

For nonlinear differential equations this system in general becomes nonlinear, 
and some iterative procedure is required. For the Euler equations treated here, we 
split the differential operator in such a way that the implicit part of the 
approximation is not only linear, but also has constant coefficients. This makes it 
possible to construct an efficient solution method. 

It was shown in [6] that the approximative periodic solutions obtained with the 
leapfrog/backwards Euler method converge to an approximation of the correct 
limit solution as E tends to zero. The basic property that makes this possible is that 
the implicit part of the difference operator is “large” when E is small. In the space of 
periodic grid functions, this can be proved by using Fourier transformations. In this 
paper we will use a direct technique for the one-dimensional case, to derive 
necessary restrictions on the boundary conditions, such that the desired property of 
the implicit operator is retained. Extensive numerical experiments have been perfor- 
med, and they all show that the method is very robust and produces accurate 
solutions. 

The scheme is only partially dissipative, since the backwards Euler method acts 
on part of the grid function only. Furthermore there is no damping at all of the 
highest frequency. Therefore it was expected that extra dissipation terms would 
have to be added to avoid nonlinear instabilities. However, when using the correct 
boundary conditions, no signs of instabilities occurred for any of the experiments. 

[ 

P 
u 
v 

The Euler equations are 

ii Pa2 0 
1/p ii 0 
0 0 ii 

2. THE DIFFERENTIAL EQUATIONS 

1 zz .c 
0 

il 0 9 
0 

(2.1) 
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where ti = ,/(dp/djT) is the speed of sound. It is assumed that the equation of state is 
p= Ai?‘. Here p is the density, p is the pressure and U and V are the x and y 
velocities, respectively. 

We introduce nondimensional variables by 

where the subscript 0 indicates a typical value of the corresponding variable. (L is a 
typical length.) In this way the new system in the new variables is identical to (2.1), 
except that the equation of state now reads 

I 
p-Ap\ p’. 

UO 

By introducing the Mach-number E = ~,/a,, where a, = (dp/dp), = po the system (2.1) 
takes the form 

P [I [ 
u PyI&2 0 P V I[1 u+o i 0 PVlE2 P 

24 + VP u 0 v 0 I[ U = 0, 

v I 0 0 u vy l/P 0 0 v 

I 
j 

(2.2) 

When requiring smooth solutions, it is immediately clear from (2.2) that the 
divergence U, + v, must be smail. 

The system (2.2) is very unsymmetric, and it is not a good basis for a numerical 
method. Furthermore, the equation of state shows that the pressure tends to infinity 
when E tends to zero. To get a more convenient system, we shall symmetrize (2.2) 
and at the same time eliminate the large part of p. 

From the scaled equation of state, we expect that p is a perturbation of l/(ye’). 
Specifically we take 

where c =p(y - 1)/2. The new “pressure” ~7 is then defined by 

2p’Y ~ 1 v2 2 
p= &(Y- 1) 

-- 
&(Y- 1) (2.4) 
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giving the symmetric system, 

I 
d 
U 

V I + i U ftc 0 

;+C u 0 

0 0 u 

d II 0 
1 

V 
E+c 

u + 0 v 0 

1 
v x ;+c 0 v 

Kleinerman and Majda [ 11, 121 analyzed the connection between the compressible 
and incompressible systems for the Cauchy problem (see also Ebin [5]). They 
showed that with proper initialization the solution of (2.2) converges as E + 0 to the 
solution of the incompressible system 

u,+uu,+vuI.+p,=o, 

v, + MU, + vu.,. sp,, = 0, 

u,+u,.=o, 
(2.6) 

which is also called the reduced equation. 
The value p, as given by (2.3), is not defined for E = 0. However, only derivatives 

of p occur in (2.6), and the large part is a constant. Therefore, p in (2.6) should be 
interpreted as the pressure defined by (2.3), but with the constant l/(ys2) subtrac- 
ted. By using a Taylor expansion in (2.3), we get 

p=-$+f+O(li’), 

showing that p must be of order E. 
This same result can be obtained by applying the Kreiss bounded derivative 

method [ 13, 9, 11. If the time derivatives are bounded initially, they will be boun- 
ded on any finite time interval, and we get immediately from (2.5) 

u,r + v,. = O(E), 

B.=@(E), P.” = O(E). 

With proper boundary conditions this shows that /j = O(E), and that the incom- 
pressibility condition U, + vy = 0 holds in the limit. 

By differentiating (2.5), and requiring that the second derivatives are bounded, 
we obtain in the limit 
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(2.7) 

This system is often used for computations, since the pressure occurs explicitly in 
the third equation. It can be derived directly from (2.6) (with p =p) by differen- 
tiating the first and second equation with respect to x and y, respectively, and 
adding them. 

The numerical method to be presented in this paper is applied directly to the full 
system (2.4). The structure of this system is very convenient for the application of a 
semi-implicit method, since the large part of the coefficient matrices is constant. Not 
only do we avoid the solution of a nonlinear system, but we can also use a constant 
LU-decomposition and get the solution by simple back-substitutions in each time 
step. To get a more compact notation, we introduce the vector U and the matrices 
Aj, Bj by 

Lo o oJ LuJ 

[ 

24 c 0 
B,= c u 0 

0 0 u 

The system to be solved is 

.,+(&+P,) u=o, (2.8) 

where 

P,=A,&+A,~, 
aY 

PI=,,-&,,?;. 

As an application problem we shall consider subsonic flow in a channel according 
to Fig. 2.1. It is assumed that the flow is symmetric in the y direction, such that the 
x axis is the symmetry line. The configuration is such that all realistic types of 
boundaries are present: open inflow and outflow boundaries, solid wall and sym- 
metry line. 
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FIG. 2.1. Flow in a channel. 

Gustafsson and Kreiss [9] derived well-posed boundary conditions for the open 
boundaries: 

Znjlow (u>O at x=0) 

clp+EU=Eg;, !X20 
(2.9) 

Outflow (24 > 0 at x = 1) 

v=g; 

/3p-&EU=&g,, p30 (2.10) 

Here gi, gt , g, are given functions of y and t. 
The parameter values LY = 0 and fi = 0 were not considered in [9]. Well posedness 

can be proved if one of these parameters is kept nonzero. In such a case the variable 
p” will remain of the order E, and $/E is finite in the limit E = 0. The solid wall boun- 
dary condition v = 0 is obvious, as well as the symmetry conditions & = uI. = v = 0. 

3. THE NUMERICAL METHOD 

When solving hyperbolic problems using explicit difference methods, the size of 
the time step is determined by the fastest propagation speed inherent in the system. 
If fast waves are present, a small time step must be chosen, and the computing time 
may become large. In our case we consider almost incompressible flow, i.e., the 
Mach number is low and the essential variation of solutions is on the slow time 
scale only. For such a problem accuracy requirements allow for a time step deter- 
mined by the fluid velocity. 

The Crank-Nicholson scheme is unconditionally stable and second order 
accurate, but it was shown in [6] that nonphysical oscillations occur for small 
values of E. The backwards Euler scheme applied on the full system does not have 
this drawback, but it is only first-order accurate. In the semi-implicit leap- 
frog-backwards Euler method presented in [6] this latter drawback is also 
removed. The grid is defined by (xi, yj, t,) = (idx, jdy, nk), i= 0, l,..., M, 
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j=O, l,..., N, and the notation U; is used for U(x,, yj, t,). The system (2.4) is 
approximated by the leapfrog-backwards Euler difference scheme 

( ) 
I+f Q, u”+‘=Ql(u”) cl”+ un-‘, (3.1) 

where the operators Qj, i= 0, 1, are defined as 

Q,=W4Ar+~&)~ 

Q, = -WWbr+&&J. 

Here DoX, Day are the standard centered difference operators, and the matrices Ai, 
Bi = Bi( Un) are defined in Section 2. Initial conditions are such that Ui is always 
given. 17; is either determined by the one-step full implicit Backwards Euler scheme 

( 1 
I+;Q Ul=@, where Q=iQO-Qj, (3.2) 

or it is explicitely given. 
The difference scheme (3.1) is applied at inner points, and it requires extra boun- 

dary conditions which are not needed in the differential problem. We consider each 
boundary separately. 

The wall, y = 1. The only boundary condition required by the system of dif- 
ferential equations is u = 0. The two extra conditions necessary for the difference 
method are derived from the differential equations. The last equation reduces to 
d, = 0 at y = 1, and therefore we can equate the pressure at the two upper grid lines. 
When the second equation is applied at the wall, no y directives occur, hence the 
centered difference scheme can be applied unmodified. The complete set of boun- 
dary conditions at y = 1 is 

d;N=D;N-ll, i= 1, 2 ,..., M- 1, 

ug +~&&y = - u$rD,,u”, - $,D,,, pi,,, + ~7; l, (3.3) 

i = 1, 2 ,..., M- 1, 

u” =o 
IN ) i = 0, l,..., M 

The symmetry line, y = 0. An extra grid line {(xi, yP 1 = -dy), i = 0, l,..., M) is 
introduced below the symmetry line, and the difference approximation (3.1) is 
applied on the symmetry line itself. 
The symmetry conditions are 

dX =d;-1, 

u” = u’? 
11 1,-l, (3.4) 

vy1= -v;-,, i=O,l M ,“‘, 
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The inflow boundary, x = 0. For reasons becoming clear in Section 5, we shall 
use the value c1= 0 in (2.9), i.e., the velocity is explicitly specified at the inflow 
boundary. The third condition is obtained by extrapolation of the outgoing charac- 
teristic variable ~7 - U. We get 

pzj - u;;, = 2( a;, - u;,, - ( pzj - u%), 

‘;;i=gi (Yj, rn)3 (3.5) 

u;fi=g~l(Yjf [n), j=O, l,..., N. 

The oucfow boundary, x = 1. The variables corresponding to the outgoing charac- 
teristics are j? + u and u. Considering the one-dimensional problem, the third 
equation is decoupled from the others, and the approximation reduces to the pure 
leapfrog scheme. It is well known, see for example [lo], that extrapolation along 
grid points at the same time level leads to an unstable approximation for that 
scheme. Therefore, the extrapolation for u is modified such that information 
backwards in time is used. We get 

Pbj + ubj = 2( PL - Ij + u& lj) - (p”, - *j + uk - zj), 

PMj-EUMjUjEEgl(Yj, ln) (/I = 1 in (2.10)), (3.6) 

V”M. ’ = 2v” M- Ij -u”-1 
M~-2j3 j = 1, 2 ,..., N. 

Note that the given data in the second condition are of order E, such that the 
modified pressure also is of order E in accordance with the arguments of Section 2. 
In each time-step there is an algebraic system of equations to be solved. Since this 
system is not only linear but also has constant coefficients, the solution is greatly 
simplified. The coefficient matrix is LU-decomposed once and for all, and in each 
time step the solution is obtained by two back-substitutions. 

4. STABILITY 

The stability condition for the Cauchy problem for approximations of type (3.1) 
was derived in Theorem 2.2 of [6] under the assumption that the symbols oO, 0, 
are simultaneously diagonalizable. The latter condition is easily verified in our case, 
since &, is skew-symmetric and 

&,= -2Ai(usin~,+usin~,)Z-c&,, i = k/h. 

(Here it is assumed that the space steps both equal h.) The eigenvalues aj of &,/i 
are 

a, = 21(sin2 5, + sin2 c2)l12 

a, = -211(sin2 5, + sin2 [2)1’2 

a3=0, 
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with the eigenvalues bj of &,/i given by 

b,=-21(usinl,+vsint,)-caj, j= 1, 2, 3. 

Stability holds if for all j one of the conditions 

aj = 0, PiI ~2, 

I aj/E I > I bj I > 

is satisfied. For small values of E, the only nontrivial condition is 1 b, 1 < 2, which 
implies the final stability condition 

h 

k~lul+lvl~ (4.1) 

Next we shall consider the mixed initial boundary value problem. We will limit 
ourselves to the one-dimensional case, the theoretica results derived are later 
verified for the two-dimensional problem by numerical experiments. The 
approximation is 

where A,, B, are defined in Section 2. The coefficient matrices can be 
simultaneously diagonalized, giving the new system 

Vi= T-U,= (+), vj2’, u;~‘)~ 

The boundary conditions (3.5) and (3.6) written in homogeneous form becomes (all 
variables evaluated at time level n unless otherwise specified) 

up - &42’ + 42) = 0, 

06’ f - 42’ = 0, (4.3) 

v/j3) = 0, 
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at the inflow boundary, and 

at the outflow boundary. The second outflow condition has been normalized such 
that it corresponds to data of order one. 

The normal mode analysis leads to the determinant condition, see [lo], which is 
derived for the coefficients of the solution to the resolvent equation. With proper 
normalization of the variables, it means that the determinant of the system is dif- 
ferent from zero uniformly in z for / z 1 > 1. 

Since we are dealing with the small parameter E in our system, it is natural to 
strengthen the stability condition, such that the estimates of the solution do not 
break down as E approaches zero. Therefore we shall call the approximation 
uniformly stable if the determinant condition is satisfied uniformly in E. By this we 
mean that the lower bound on the magnitude of the determinant is independent of E 
as E -+ 0. 

We shall first consider the quarter-space problems, where the equations are 
defined either in the domain { 0 6 x, 0 6 t } or in the domain {x 6 1, 0 6 t >. 

THEOREM 4.1. The leapfrog-backwards Euler scheme is uniformly stable with the 
boundary conditions (4.3) for the right quarter space problem, and with (4.4) for the 
left quarter space problem. 

Proof: The third equation is decoupled from the others, and since it is indepen- 
dent of E, uniform stability is trivial when uh3) is specified. The first two components 
C(l), dC2) of the solutions to the resolvent equation have the form (for the right quar- 
ter space problem) 

fi!l) = &, I IIcl<L 
32) = zpj, I /PI<17 

where the characteristic equations for K and p are 

(z2-l)K+iZ(U+C)(K2-l)+~z2(K2-1)=0, 

(z2- l)~+Az(u-c)(/L*- 1)$2*+ l)=O. 

(4Sa) 

(4.5b) 
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The boundary conditions give the relations 

a-z=o, 
(p- l)Zz=O, 

and the determinant is (p - 1)2. Obviously, we only have to prove that ,U never 
approaches 1 for any z, 1 z I> 1, and for any E, 0 < E < 1. From (4.5b) we get 

E(Z2 - 1) 
~2-1+j.Z[E(u-c)-z,~=o~ 

The coefficient for p is of the order E even if 1 z 1 is large. Hence the roots pi, p2 of 
(4.5b) satisfy 

PI + P2 = O(E), 

PlP2= -13 

yielding 

PI = f 1 + co(E), IAI < 1 for IzI> 1, 

p2 = Ii 1 + O(E), Ip21 > 1 for (zI> 1. 
(4.6) 

It remains to show that only the minus sign is valid for p,. For p = 1 we must have 
z=fl,andweintroduceaperturbationforz,andsetz=1+6,,6,>0,~~=1+6~ 
in (4.5b). Keeping only first order terms in 6,, 6, gives 

6,= 6, 
-/t(U-C)+A/E 

>O 

showing that ,u=p2. Similarlyforz=-(1+6,), 6,>0, ,~=1+6,, weget 

6,= 6, 
-A(u-C)+A/& 

>o 

again showing that ,U = ,u~, and stability follows for the right quarter space problem. 
For the boundary x = 1, the same analysis holds almost unchanged. The outgoing 
characteristic variable is also here extrapolated, and the only difference is the coupl- 
ing between the variables u(‘), uC2) For the resolvent variables we have . 
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and obviously no extra difficulty occurs for E -+ 0. The extrapolation used for vc3) is 
known to be stable, see [lo], and the parameter E is not involved. This proves the 
theorem. 

The general theory for mixed initial-boundary value problems shows that 
stability follows for the strip problem with two boundaries if the quarter-space 
problems are stable. However, in general we cannot expect that the same property 
is valid also for uniform stability. This is most easily understood by considering the 
differential equation. Normally the characteristics travel across the domain with 
finite speed of propagation, hence the right boundary “knows” what happened at 
the left boundary only after a time period of order one. For our system however, 
this reaction time is of order e, which means that there is a much closer coupling 
between the boundaries. We shall prove that uniform stability holds for our 
approximation. 

THEOREM 4.2. The leapfrog-backwards Euler scheme is uniformly stable for the 
strip problem with the boundary conditions (4.3), (4.4). 

Proof The equation for uC3) is trivial, since it is independent of a. The general 
solution to the resolvent equation for u(l), II(*) has the form 

where rcl , rc2 and /.L~, p2 are the roots to the characteristic equations (4Sa) and 
(4Sb), respectively. The relations (4.6) given for pL1, p2 obviously hold also for rcl, 
uq. The boundary conditions give 

-M 
01+ fl*u* -z,-r,p;“=O, 

t1(p1- 1)’ + 72(P2 - 1)’ PL2 M = 0, 

- l-f (o,Ic~+cr,)+ 
( 1 ( ) 

l+i (r,/AL;M+z2)=0, 

dlu;M-*(ul - 1)2+o,rc;*(K2- 1)2=0. 

We denote by Q the corresponding coefficient matrix 

Q= 

1 lc; M -1 -KM 

0 0 (h-l)* (P2-1)2PL;M 

-(l-guy -(d) (I+;)$ 1,; 

uy-‘(u, - I)* Jc;2(u* - 1)2 0 0 
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We have 

DetQ=- ~~-1)~ rcf’-‘(~~--l)~ 
( i 

[(~+~)a;M(+;“] 

-K;*(K2- 1)' [(I+;)-(+"K?]j 

+(/L2-l)2/L~M K;M-2(K,-1)2 
1 

[(,+~>,,,K+~)] 

-KF2(K2- 1)2 [(l+~)+(l+]}~ 

It follows that 

-KF2(K2 - 1)2 [(I+;)-(1-+Pwq} 

+(p2-1)2 1 +A ( E)(($-~)[(~)"(Kl-~)2K~2-K;2(K2-~j2]. 

Since each quarter space problem is stable, we know that 

K,=l, K2g-l, 

/l,E -1, p2rl. 

According to (4.6) and the analogous relations for K~, K~, we set 

K~ =exp( -a,&), ICY = -exp(a,c), 

pl = -ev(-BIEL CL2 = exP(PzE), 

where al, a2, P,, P2>0. 
Thus 

-4 
1 

t+iexp[- (a1+/L2)tM] >I 

581/63/2-IO 
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Apparently, Det Q is of order l/s. This indicates that we have not only uniform 
stability as E -+ 0, but we also gain a factor E if non-zero data are introduced. In the 
next section we shall show that this is actually the case. 

5. ACCURACY 

It was shown in [6] that the leapfrog-backwards Euler method for periodic 
problems with constant coefficients give approximations to smooth solutions with 
second-order accuracy if E is small enough. More precisely, the estimate has the 
form 

I/ U( t,) - u” II < C(h2 + Ek). (5.1) 

A closer look at the proof reveals that the extra factor E, which improves the lirst- 
order accuracy and which also provides convergence to the reduced equation, is 
obtained because the operator (I+ QO/s)-’ is of order c/k (expect for the lowest 
and the highest frequency). This fact is in that case easily established by using a 
Fourier transformation. In the present case with boundaries involved, the situation 
is more complicated. 

We will again limit ourselves to the one-dimensional case which is suflicient to 
illustrate the influence of the boundary conditions on the accuracy. We shall study 
the operator 

;Q,=‘k ’ ’ Do [ 1 & 1 0 

acting on one-dimensional vectors 

We shall consider the homogeneous boundary conditions 

(4 uo+~po=o, 
(b) P- 

u.44 -;PM=o’ 

(cl uo -po - 2(u, -PI) + u2 -p* = 0, 

(d) u,+~,-2(u,_,+~,_,)+u,-,+~,-*=o. 

(5.21 

(5.3) 

The differential equations are well posed with the conditions (5.3a), (5.3b) for u >, 0, 
/I 2 0 for both compressible and incompressible flow. We shall prove that a stronger 
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restriction is required for the difference approximation in order to obtain the right 
order of accuracy. 

LEMMA 5.1. Consider the difference operator (I+ (Jo/e), where Q0 is defined by 
(5.2), acting on grid functions U, satisfying the boundary conditions (5.3). rf E = o(k) 
(this assumption can be removed at the expense of a more elaborate proof), then the 
estimate 

llV+Qo/~)-‘II QC; (5.4) 

holds if and only ifu = 0. (Zt is assumed that o! is independent of E.) Here, I(. 11 denotes 
the norm corresponding to the maximum norm for vectors. 

Proof We consider the equation 

Q”[%]=[~] (5.5) 

with boundary conditions (5.3). The case A4 even is first treated. Let x0, C, denote 
summation over odd and even integers, respectively. The solution is for even j 

j-l 

Uj=UO+i C,FY) j = 2, 4 ,..., M, 
Y = 0 
/--I 

pj=ao + 1” Co G,m, j = 2, 4 ,..., M. 
v=l 

In particular we have 

and 

M-l 
u,=u,+A 1, F,= -Ejjo+I. Mf1 F, 

“=I & ,=; 

Do can be eliminated, and we get 

which gives 
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Obviously, the estimate (5.4) holds only if 1 uM 1 is bounded for small values of E, 
hence we must have CY = 0. Next assume that LY is zero, i.e., the velocity is explicitly 
given at the inflow boundary. We have 

and by using the relations between ZQ,, ui, U, given above, we get 

j = 0, 2 ,..., M. (5.6a) 

Similarly we get for d 

I P.,I +c/l +E IIFII), j = 0, 2 ,..., M. (5.6b) 

The values of p and u at odd grid points are coupled to the even points by the 
extrapolation conditions (5.3c), (5.3d). Since the parameter E is not present in these 
equations, the estimates for odd points follows immediately from (5.6a), (5.6b). The 
final estimate is 

max( II d I/ , II u II 1 d f (II FII + II G II 1. (5.7) 

Next we consider M odd, and get 

j-1 

uj=u,+A x,F,, j = 3, 5,..., M, 
,I = 2 
l-1 

di=P,+i ~,G,, j=3,5 M. >.‘.> 
v = 2 

When setting j= M- 2, A4 and adding these relations, we obtain after using (5.3d) 

-S(f.,-,+G,-,). 

We also have 

M-2 

U,-,=U,+Ee co F,, 

M-2 
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which gives 

[ 

M-l M-2 

uo+Po=u,+P~+~ .;; (F,+G,)- .;; (Fv+G,) 
1 

-i(F,-, +GM-,) (5.8) 

The difference equations give 

u,=u,+AF,, 

F2=do+~G,, 

and after substitution into the boundary condition (5.3~) we get 

u,-~o=ul;~l+~(G,-Fl). (5.9) 

When adding the equations (5.8) and (5.9) we obtain 

u,,=u,+~(G,-F,-FM-,-G M-l)+;[;;; ( 

M-2 

F,+Gv)- co (Fv+G,) , 
v=l 1 4 

and after subtraction of (5.9) from (5.8 

Ba=BI+$(FI-G,-FM~,-GM~ 

We also have 

M-I M-2 

u,,,=u,+~ ~eFv=uo+E, c 
v=2 [ ( "Zzp 

F,fF"-;Gv 
> 

+~"~2(F"+G"~+~(FI-GI+FM-I+GV-I) 
.=P 1 

-U,+,=dM=fi,+A ~eGY=$o+~ 1 
; 

M-l M-1 

v=2 [ ( Y-z 

G,+-;Gv 
) 

+~"~2(F,,+G")+~(G,-FI+FM~I+GM-I) 
Y==P 1 

When multiplying the last equation by a/E and adding it to the previous one, we get 

(1+;)u,=;(1.,+3), 



394 GIJJZRRAANDGUSTAFSSON 

where Ti, T2 are independent of E. Hence, it is necessary that a = 0 also for odd M. 
Under this condition the estimate (5.7) is obtained in the same way as for the case 
A4 even. 

We have proved that kQ;’ is bounded, or equivalently that 

II Qo U II 3 Ck II u I/ , c>o. 
But then 

(5.10) 

and (5.4) follows immediately. 
Lemma 5.1 can also be applied to the difference operator acting in the y direc- 

tion. In that case, the boundary conditions are independent of E. Therefore the 
estimate (5.10) follows immediately and (5.4) holds. When deriving the complete 
error estimate, the truncation error must be entered into the right-hand side of the 
boundary condition. In (5.3c), (5.3d) these terms are of order h2, and there is no 
loss of accuracy. In the y direction, there is the numerical boundary condition 
ji,N =Pi,+ , This is normally only first-order accurate, but in our case the 
solutions satisfy &(x, 1, t) = 0 which gives 

F(x, 1, t) =B(x, 1 -h, t) +;pJx, 1, t) + 0(h3) 

showing second-order accuracy. 

6. NUMERICAL TEST-RUNS 

An extensive number of test-runs have been performed, which all confirm the 
theoretical (but sometimes simplified) analysis given in this paper. These numerical 
experiments will be published elsewhere. Here we shall only show the most impor- 
tant properties, namely that the solutions converge to accurate solutions as E tends 
to zero, and that the scheme is actually giving “incompressible solutions” even if the 
data are perturbed. 

The first experiment simulates a case where the fluid is initially at rest, and then 
put into motion by increasing the velocity smoothly at the left boundary. The boun- 
dary conditions are 

x=0 

sin’ T + sin2(rcf) sin2(ny) , 1 O<t<l 
l4= 

l<t 

x=1 
p - EU = 0. 
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6 =a.5 
. 6 =0.2 

__ c zo.01 

-0.1 - 

FIG. 6.1. The velocity component c at x = 0.05, y  = 0.40. 

Figure 6.1 shows the result for E = 0.5, 0.2, 0.01, with step-sizes h = 0.05, k = 0.025. 
The convergence is clearly illustrated. As a measure of incompressibility the quan- 
tity 

( ) 

112 

DIV= c ID+,Y~ii+D+~~ij12h2 (6.1) 
ki 

was computed, being less than lop3 in all cases. In the second experiment a strong 
perturbation was introduced initially, such that the data are no longer divergence- 
free. The initial data were 

u = 0.1 + cos( 27cx), 

v = 0, 

j = 0. 

Figure 6.2 shows how the full backwards Euler first step takes the divergence 
down such that the solution goes back to the “incompressible track.” When the 
semi-implicit scheme is applied at the second step, a slight increase of the 
divergence occurs, but it is later damped out again. Since the backwards Euler 

k . t 
1 2 

FIG. 6.2. DIV defined in (6.1) as a function of time. 
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TABLE I 

0.2 0.2135 0.5409 0.53988 
0.1 0.2621 0.5434 0.54002 
0.05 0.2571 0.5442 0.53999 

method is applied on part of the system only, and since it is not strictly dissipative 
even for those components where it is applied, there seems to be good reason for 
adding extra dissipation terms. However, the method have shown a very robust 
behaviour, and there have been no signs of nonlinear instabilities even for large 
time-intervals. 

The accuracy was tested by running the scheme for h = 0.2, 0.1, 0.05. The values 
of u at an inner point are given in Table I for three different e-values. The error 
estimate has the form (5.1) and we expect the (E/C) term to dominate for larger 
values of E. Since k is chosen proportional to h, we make the ansatz 

&E, h) - U(E)ZC~(E) Eh + C-~(E) h2, 

where 8 is the computed solution. 

(6.2) 

If h is small enough, the first error term always dominates. However, for practical 
calculations, the second error term is the largest for small values of E. Assuming that 
the error is proportional to hqcE), we get 

d&)=1% 
U(E, h/2) - UC&, h) 
WE, h/4) - WE, h) I! log 2. (6.3) 

When moving from left to right in Table I, the quantity on the right-hand side of 
(6.3) should go from 1 to 2. We get from our experiment q( 1) = 0.9, q(O.l) = 1.7. 
The third coiumn shows that the calculation is at the level of round-off, i.e., the 
error is of the order 4,/k, where 4, is the machine precision (IBM single precision 
was used). 

7. CONCLUSION 

The leapfrog-backwards Euler method that was developed and analyzed for 
periodic problems in [6] has been applied to subsonic flow problems at various 
Mach numbers E. A modified pressure is defined such that the system becomes sym- 
metric and well conditioned even when E is very small. It has been shown that the 
method is accurate for almost incompressible flow, and the solutions converge as 
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the Mach number goes to zero. Accordingly, the method provides a simple and 
efficient way of computing also incompressible flow; the divergence-free property is 
automatically taken care of. 

In each step an algebraic system of equations must be solved, but it is linear and 
has constant coefficients. In this way a direct solver can be used even for large 
problems, since each step requires only two backsubstitutions. 
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